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Abstract
The famous two-slits experiment is used to theoretically introduce the problem
of detecting both which-slit (WS) property and another quantum property
incompatible with the WS one, together with the measurement of the
(complementary) position of the final impact point. General conditions for the
existence of solutions are singled out, and a family of solutions is concretely
found. Moreover, we theoretically design an ideal experiment which realizes
this non-trivial detection.

PACS numbers: 03.65.Ca, 03.65.Db, 03.65.Ta

1. Introduction

Since the birth of quantum mechanics, the double-slit experiment showed its effectiveness in
highlighting the conceptual puzzles of quantum theory [1–3], in particular in illustrating the
duality between corpuscle-like and wave-like behavior of the physical entities. Here, it is
used to introduce the following question: for each particle hitting and hence localized on the
final screen, is it possible to ascertain which slit the particle passed through, but also another
property incompatible with ‘which slit’ property?

Let us explain how this question enters the fundamental features of quantum theory, such
as complementarity and compatibility1 [4]. In a typical two-slits experiment, by which-slit
(WS) property we mean the property stating which slit the particle is localized in, when it

1 According to standard quantum theory [5] two observables are compatible, i.e. they can be measured together on
the same individual specimen of the physical system, if they are represented by two self-adjoint operators A and
B which commute with each other: [A, B] = 0. Hence, if [A, B] �= 0 the two observables are incompatible and
they cannot be measured together. The extreme case of incompatibility occurs when [A, B] = ic, i.e. when A and
B are canonically conjugate. Following [4], in such a case the two observables turn out to be complementary. The
momentum P and the position Q are the typical example of complementary observables: [P,Q] = −ih̄
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crosses the slits’ support. The WS property cannot be directly ascertained by means of the
localization measurement it corresponds to, together with the measurement of the position of
the impact on the final screen, because the two quantum observables corresponding to these
measurements are complementary. For this reason, all devices conceived over the years to
attain information about the WS property, such as the recoiling slit of Einstein [6], the light-
electron scattering scheme of Feynman [7], the micro-maser apparatus of Englert, Scully and
Walther (ESW) [8–10] (henceforth called WS detectors), yield indirect knowledge: they work
by measuring a property T, different from the localization in one of the slits but compatible with
the measurement of the final impact point, such that the slit taken by the particle can be inferred
from the outcome of the measurement of T. Similar detectors, outflanking complementarity,
can be devised also for properties other than the WS one. Then the question arises whether
this kind of detection can be performed, on the same specimen of the physical system, for both
such another property and WS property, in the case that they are incompatible, in the sense
that the corresponding projection operators do not commute, together with the measurement
of the final impact position.

In the present work this question, referred to as problem (P), is investigated from a
theoretical point of view. An ideal double-slit experiment is designed in which this non-trivial
detection takes place. Moreover, we establish a method to find properties and state vectors
which make possible this double detection.

It is worth to stress that the present work is not concerned with the investigation of the
possible compromises between which-path knowledge and visibility of interference fringes,
albeit provoked by erasure; this subject has thoroughly been studied and settled by several
authors (see [11–13] and references therein). We seek for circumstances where which-path
knowledge is ensured together with that of other incompatible properties, so that no erasure
and hence no interference occurs.

Besides widening the picture of quantum complementarity and (non) compatibility, our
investigation also addresses the problem of making inferences about three non-commuting
observables. Though this issue was treated by Vaidman, Aharanov and Albert (VAA) (how to
ascertain the values of σx, σy and σz of a spin-1/2 particle, [19]), our method yields inferences
of a quite different nature with respect to those obtained by VAA.

In section 2 we formally introduce the concept of WS detectors. The more general notion
of detectors is introduced in section 3, where problem (P) is formulated in mathematical
terms. In section 3.1 we present an ideal experiment, whose concrete realizability is discussed
in section 3.2, which shows that our problem admits non-trivial solutions. In fact, to find
this solution we have followed a mathematical method which we develop in section 4. Here
we show that the existence of solutions of problem (P) depends upon the dimension of the
Hilbert space HI the position of the particle is described in. If dim (HI ) < 4, then no solution
exists. If dim (HI ) = 4, then for every solution the detections of the WS property and of the
incompatible property are perfectly correlated (section 4).

In section 4.3 we prove that solutions without correlations exist if dim (HI ) � 6.
Moreover, a family of these solutions is concretely singled out.

In section 5 we outline how ‘environment-induced decoherence’ [14] relates to the present
work; furthermore, some insights, from our results, into consistent histories theory [15–17]
are introduced.

2. Which-slit detectors

Let us begin by introducing the quantum formalism for describing a two-slits experiment.
We consider a localizable particle whose observable position is represented, at time t in the

2



J. Phys. A: Math. Theor. 41 (2008) 125302 G Nisticò

Heisenberg picture, by an operator Q(t) of a suitable Hilbert space HI . Let the further degrees
of freedom, related to spin or similar, be described in a second Hilbert space HII , in such a
way that the complete Hilbert space is H = HI ⊗HII . In general, if AI (AII ) denotes a linear
operator of HI (HII ), by the same symbol without index I (II ) we denote the linear operator
A = AI ⊗ 1II (A = 1I ⊗ AII ) acting on the whole space H = HI ⊗ HII . Let us suppose that
the Hamiltonian operator H of the entire system is essentially independent of the degrees of
freedom described by HII , so that we may assume the ideal case H = HI ⊗ 1II .

The projection operator identifying the WS property, ‘the particle passes through slit 1’,
has the form E = EI ⊗ 1II , where EI is the projection operator which represents the property
‘the particle is localized in slit 1 at time t1’, where t1 is the time the particle crosses the screen
supporting the slits. We may assume, without losing generality, that the property ‘the particle
passes through slit 2’ is represented by E′

I ⊗ 1II , where E′
I = 1I − EI .

Given any interval � on the final screen, the event ‘the particle hits �’ coincides with
the property ‘the particle is localized in � at time t2’, where t2 is the time of the final impact.
Such a property is represented by the projection operator

F(�) = e
i
h̄
H (t2−t1)F (t1)(�) e− i

h̄
H (t2−t1), (1)

where F (t1)(�) is the localization projection which represents the property ‘the particle is in
� at time t1’. Hence, E and F(�) correspond to measurements of the position observables
Q(t1) and Q(t2) respectively. Now, since between the times t1 and t2 the particle is interaction

free, we have HI = P 2
I

2m
, and so d

dt
Q

(t)
I = i

h̄

[
HI ,Q

(t)
I

] = i
2mh̄

[
P 2

I ,Q
(t)
I

] = PI

m
. Then

Q
(t2)
I = Q

(t1)
I + iPI

m
(t2 − t1) follows. Therefore E and F(�) turn out to be complementary

observables, because
[
Q

(t2)
I ,Q

(t1)
I

] = −ih̄ t2−t1
m

. Thus, it is generally not possible to ascertain
the WS property and the final impact point, directly by localization measurements.

However, if for a given state vector � a projection operator of the kind T = 1I ⊗TII exists
such that equation T � = E� holds, then it is possible to detect which slit each particle hitting
the final screen passed through by means of a measurement of T. Indeed, since [T ,E] = 0,
the formula

p(T |E) = 〈�|T E�〉
〈�|E�〉 ,

(
respectivelyp(E|T ) = 〈�|T E�〉

〈�|T �〉
)

, (2)

represents the probability that the outcome of T (respectively of E) is 1 if the outcome
of E (respectively of T) is 1 [18]. It can be easily seen that equation T � = E� is
mathematically equivalent to state that both conditional probabilities in (2) are equal to 1,
so that from the occurrence of outcome 1 (respectively 0) for T we can infer the passage of
the particle through slit 1 (respectively 2). In other words, the condition T � = E� entails
an entanglement for � that yields these correlations. Moreover, F (t1)(�) in (1) must have the
form F (t1)(�) = F

(t1)
I (�) ⊗ 1II , because it is a localization operator at time t1, like E. Then,

by using our assumption H = HI ⊗ 1II in (1) we find that F(�) must also have the form
F(�) = FI (�) ⊗ 1II , and this implies [T , F (�)] = 0. Therefore, the measurement of T can
be performed together with the final impact point and from its outcome we can infer the path
taken by the particle; thus projection T can be used as a WS detector.

Example 1. The ‘bullet’ of the two-slits experiment proposed by ESW [8] is a rubidium atom
in the long-lived excited state 63p3/2. Hilbert space HII concerns with a pair of cavities 1̂ and
2̂ (see figure 1). The cavities are resonators for the electromagnetic field, tuned at a microwave
frequency such that whenever the excited atom enters cavity 1̂ or 2̂, it decays emitting a photon.
The event ‘a photon is revealed in cavity 1̂ (respectively 2̂)’ is represented by a projection
operator TII = |1〉〈1| (respectively T ′

II = |2〉〈2|) of HII . In this experimental situation the

3
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Figure 1. Which-slit detector.

complete state vector of the particle must have the form � = 1√
2
[ψ1 ⊗ |1〉 + ψ2 ⊗ |2〉], where

ψ1 and ψ2 ∈ HI are state vectors respectively localized in slits 1 and 2 when the particle
crosses the two-slits support, i.e. EIψ1 = ψ1, EIψ2 = 0. A WS detector is represented by the
projection operator T = 1I ⊗ |1〉〈1|; indeed (1I ⊗ |1〉〈1|)� = (EI ⊗ 1II )�, i.e. T � = E�,
and [T ,E] = 0 trivially holds.

3. Detecting incompatible properties together

The concept of the WS detector can be extended to properties more general than the WS
property by introducing the following definition.

Definition 1. A projection operator Y of H is called a detector of a property G = GI ⊗ 1II

with respect to the state vector � if
(i) [Y, F (�)] = 0, (ii) [Y,G] = 0 and Y� = G�.

A measurement of Y detects G in exactly the same way a measurement of the WS detector
T detects the WS property E. The following example turns out to be a detector for a property
incompatible with the WS property, but it acts as a quantum eraser for the WS property.

Example 2. Let us go back to example 1. Once the vectors |+〉 = (1/
√

2)(|1〉 + |2〉) ∈ HII

and ψ+ = 1/
√

2(ψ1 + ψ2) ∈ HI are defined, we introduce the projection operators
G0 = |ψ+〉〈ψ+| ⊗ 1II and Y0 = 1I ⊗ |+〉〈+| respectively. Property G0 can be detected
on each particle hitting the final screen, because Y0 turns out to be a detector of G0 , according
to definition 1.

However, the two detectors Y0 and T do not commute; therefore the detection of G0

cannot be performed together with the detection of the WS property. Moreover, ESW argued
[5] that if Y0 is measured (and hence G0 is detected) the information about the WS property
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Figure 2. Erasure.

is definitively lost (erased), the occurrence of erasure being witnessed by the appearance of
interference in the probability distribution of the particles impacted on the final screen for
which Y0 = 1 (figure 2).

In the present work we seek for the possibility of detecting, in the sense of definition 1, a
property G = GI ⊗ 1II incompatible with the WS property E, without erasing WS knowledge
provided by a WS detector T, for each particle hitting—and hence localized on—the final
screen. To this aim, we require that with respect to the same state vector � there exists
both a WS detector T of E and a detector Y of G such that [Y, T ] = 0, so that Y and T
can be measured together, yielding detection of E and G. Condition [Y, F (�)] = 0 will be
automatically satisfied if Y has the form Y = 1I ⊗ YII . Therefore, our task will be successful
if the following problem has a solution.

(P) Given the WS property E = EI ⊗ 1II , we have to find a projection operator GI of
HI , two projection operators TII and YII of HII and a state vector � ∈ HI ⊗HII , such that the
following conditions hold:

(C.1) [E,G] �= 0, i.e [EI ,GI ] �= 0I ;
(C.2) [T , Y ] = 0, i.e [TII , YII ] = 0II ;
(C.3) T � = E�;
(C.4) Y� = G�;
(C.5) 0 �= E� �= �, 0 �= G� �= �.

Condition (C.5) excludes the non-interesting solutions of (C.1)–(C.4), where � is a
simultaneous eigenvector of E or G. The following ideal experiment shows that this problem
admits non-trivial solutions.

3.1. An ideal experiment

The bullet of our ideal experiment is a spin-3/2 particle whose position observable is
described in a Hilbert space HI , while the spin observables are described in HII ≡ C4.

5
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Let ψ
(1)
1 , ψ

(2)
1 , ψ

(3)
1 (respectively ψ

(1)
2 , ψ

(2)
2 , ψ

(3)
2 ) be three mutually orthonormal vectors of

HI localized in slit 1 (respectively slit 2) when the particle crosses the slits’ support, i.e. such
that EIψ

(k)
1 = ψ

(k)
1 (respectively EIψ

(k)
2 = 0). No further condition is required for these

vectors. These six vectors form an orthonormal set. Then we take the Hilbert space HI as the
space generated by them. This implies that

EIϕ = 〈
ψ

(1)
1

∣∣ϕ〉
I
ψ

(1)
1 +

〈
ψ

(2)
1

∣∣ϕ〉
I
ψ

(2)
1 +

〈
ψ

(3)
1

∣∣ϕ〉
I
ψ

(3)
1 for every ϕ ∈ HI . (3)

There are four eigenvectors α = |3/2〉, β = |1/2〉, γ = |−1/2〉, δ = |−3/2〉 ∈ HII

corresponding to the four possible values (in h̄ units) of the spin along direction z, represented
by the Hermitian operator Sz of C4.

Let the particle be prepared in the entangled state (see section 3.2) represented by

� =
√

3
4

(
ψ

(1)
1 + ψ

(2)
1

)|1/2〉 + 1√
8
ψ

(3)
1 |3/2〉 + 1

4

(
ψ

(1)
2 + ψ

(2)
2

)|−3/2〉 +
√

3
8ψ

(3)
2 |−1/2〉. (4)

The four projection operators AII = |3/2〉〈3/2|, BII = |1/2〉〈1/2|, CII = |−1/2〉〈−1/2|,
DII = |−3/2〉〈−3/2| represent spin observables pertaining HII (if A = 1I ⊗ AII has
outcome 1, then the particle has spin-3/2 along z, and so on). They trivially commute with
both F(�) and E. Then the projection operator T = A + B = 1I ⊗ (|3/2〉〈3/2| + |1/2〉〈1/2|)
also commute with F(�) and E. Now, by using (3) and (4) we obtain

E� =
√

3
4

(
ψ

(1)
1 + ψ

(2)
1

)|1/2〉 + 1√
8
ψ

(3)
1 |1/2〉 = T �.

Therefore, T turns out to be a WS detector.
Now we introduce a property G = GI ⊗ 1II incompatible with E, which can be detected

by means of a suitable detector Y without renouncing to the WS knowledge provided by T.
Given any ϕ ∈ HI , we define

GIϕ = 〈ψ ′|ϕ〉Iψ ′ + 〈ψ ′′|ϕ〉Iψ ′′ + 〈ψ ′′′|ϕ〉Iψ ′′′, (5)

where ψ ′ = 1/2
(
ψ

(1)
1 − ψ

(2)
1 + ψ

(1)
2 − ψ

(2)
2

)
, ψ ′′ = ψ

(3)
1 , ψ ′′′ = ψ

(3)
2 .

A straightforward calculation based on (4) and (6) shows that

[GI ,EI ]ϕ = 1
4

{〈
ψ

(1)
2 − ψ

(2)
2

∣∣ϕ〉
ψ

(1)
1 − 〈

ψ
(1)
2 − ψ

(2)
2

∣∣ϕ〉
ψ

(2)
1 − 〈

ψ
(1)
1 − ψ

(2)
1

∣∣ϕ〉
ψ

(1)
2

+
〈
ψ

(1)
1 − ψ

(2)
1

∣∣ϕ〉
ψ

(2)
2

};
hence [G,E] �= 0, so that G and E are incompatible with each other. However, the projection
operator Y = A + C = 1I ⊗ (|3/2〉〈3/2| + |−1/2〉〈−1/2|) satisfies the condition Y� =
G� and it trivially commutes with F(�) = FI (�) ⊗ 1II ; therefore Y is a detector of G.
Nevertheless, we have [Y, T ] = 0; then Y and T can be both measured together with the
position of the final impact. In other words, both properties G and E, mutually incompatible,
can be detected together on each particle localized on the final screen. In the present work,
aimed to theoretical investigations, we are not concerned with the question of the physical
meaning of G, which evidently depends upon that of the vectors ψ

(1)
k , ψ

(2)
k , ψ

(3)
k , k = 1, 2.

Thus, we have a solution of problem (P).
The measurements of T and Y could be performed, as shown in figure 3, by measuring the

observable Sz: the outcome 1 of T occurs when the outcome of Sz is 3/2 or 1/2 and, for the
same specimen of the physical system, the outcome 1 of Y occurs if the outcome of Sz is 3/2 or
−1/2. To avoid perturbation in the dynamics of the quantum system, such a spin measurement
can be performed once the localization in � on the final screen took place (figure 3).

Such an ideal experiment allows us to make inferences, for each specimen of the physical
system, about all three observables which are as follows:

6
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Figure 3. Ideal apparatus for detecting both E and G.

(1) the position of the final impact point, which is inferred from a direct measurement of
F(�);

(2) the WS property E, whose value is inferred from the outcome of the WS detector T,
(3) the property G, which is inferred from the outcome of detector Y, like E from T.

This result is independent of the choice of the three orthonormal vectors ψ
(1)
k , ψ

(2)
k , ψ

(3)
k , k =

1, 2, within the sub-space they span, which determine the projection operator G, through (5).
These vectors can then be chosen in such a way that G turns out to be incompatible (or even
complementary) with F(�), i.e. such that [G,F(�)] �= 0; in such a case, the inferences refer
to three non-commuting observables.

Another method to ascertain the values of three non-commuting observables, namely the
three spin observables σ1, σ2 and σ3 of a spin-1/2 particle, was devised by Vaidman et al in
[19]. They proposed an ideal experiment in which a spin-1/2 particle is coupled with another
‘external’ particle, in such a way that the compound system is in a suitable known entangled
state. During any run i of the experiment, just one, say σk(i), of the three non-commuting
observables σ1, σ2, σ3, is actually measured, by means of an apparatus which leaves the entire
system in an eigenstate of σk(i) corresponding to the eigenvalue equal to the measured value.
After such a spin measurement, a suitable observable A is measured, having the property that
the outcome of the measured spin can be inferred from the outcome of A, without knowing
which spin had been previously measured; i.e. the method yields inferences such as follows:
if σ1 has been measured the outcome is +1/2, if σ2 has been measured the outcome is −1/2
and if σ3 has been measured the outcome is 1/2.

Here we want to remark the difference between the meaning of our result with respect to
that obtained by VAA [19]. According to the latter, from the outcome a(i) of A, the actual
outcome of σk(i) is retrodicted, while the inferences about the remaining two spins have a
counterfactual character: ‘if σj was measured instead of σk(i) in the run i, and if the outcome

7
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of A had been a(i), then its outcome would have been—for instance—1/2. These remaining
inferences are not interpretable as detections, such as those used to ascertain the WS property,
because [A, σk] �= 0 forbids us to introduce the corresponding conditional probabilities such
as (2). Furthermore, VAA’s inferences can be drawn only under the hypothesis that the spin
measurement actually performed leaves the system in an eigenstate of σk(i).

According to our method, the value of one of the three non-commuting observables,
F(�), is the outcome of an actually performed measurement, while the remaining two are
inferred from actually performed detections of the same kind used in two-slits experiments to
ascertain the WS property.

Remark. The general solution of the problem of ascertaining the values of two non-commuting
projection operators, F and E with ranges M and N , by measuring F and detecting E in the
sense of definition 1, was given in [18]. In the case that the state vector ψ is such that [F,E]ψ =
0, i.e. if ψ ∈ C(F,E), where C(F,E) = (M∩N )⊗ (M⊥ ∩N )⊗ (M∩N⊥)⊗ (M⊥ ∩N⊥)

is the so-called commutation sub-space of F and E, the solution singled out in [18] of this
simpler problem turns out to be rather straightforward. Our problem (P) is complicated by the
requirement of detecting two non-commuting projection operators, E and G, besides measuring
F(�). In the present case, we cannot assume either � ∈ C(F (�),E),� ∈ C(F (�),G) or
� ∈ C(F (�),E,G), while � ∈ C(E,G) holds as a consequence of (C.2)–(C.4).

3.2. Experimental issues

In the perspective of a realization of the double detection of E and G, a crucial experimental
task is to create the entanglement, encoded in the state vector � in (4), between the particle
and the detector, before the time t1 when the particle reaches the screen supporting the slits.
This can be (ideally) realized in two steps. In the first step only particles with the x component
of the spin equal to 3/2 are selected, for instance by means of a suitable Stern–Gerlach
apparatus. Hence, in the Schroedinger picture, at this stage—time t0 < t1—the state vector
is of the kind ψ |s〉, with ψ ∈ HI , ‖ψ‖ = 1, and Sx |s〉 = 3/2|s〉, so that we can take
|s〉 = 1√

8
{|3/2〉 +

√
3|1/2〉 +

√
3|−1/2〉 + |−3/2〉}.

In the second step, during their flight between times t0 and t1, the particles undergo the
action of another Stern–Gerlach magnet, able to deflect the particles with respect to Sz: the
particles with Sz = 3/2 or 1/2 (respectively −1/2 or −3/2) are forced to travel toward slit
1 (respectively 2), but through two alternative spatial channels according to the value, 3/2 or
1/2, of Sz, so that the dynamical evolution between times t0 and t1 is represented by a unitary
operator U such that

U(ψ |3/2〉) = ψ
[ 3

2 ]
1 |3/2〉, U(ψ |1/2〉) = ψ

[ 1
2 ]

1 |1/2〉, U(ψ |−3/2〉) = ψ
[− 3

2 ]
1 |−3/2〉,

U(ψ |−1/2〉) = ψ
[− 1

2 ]
1 |−1/2〉, where ψ

[J ]
k are vectors of HI representing the alternative

spatial channels taken by the particles to reach slit k; hence
〈
ψ

[J1]
k1

∣∣ψ [J2]
k2

〉 = δk1,k2 · δJ1,J2 and

EIψ
J
1 = ψ

[J ]
1 , EIψ

[J ]
2 = 0. Now, if dim (EIHI ), dim ((1I − EI )HI ) � 3, then mutually

orthonormal vectors ψ±
1 ∈ EIHI , ψ±

2 ∈ (1I − EI )HI exist such that ψ
[ 1

2 ]
1 = 1√

2

(
ψ+

1 + ψ−
2

)
and ψ

[− 3
2 ]

2 = 1√
2

(
ψ+

2 + ψ−
2

)
. If we put ψ

(1)
1 = ψ+

1 , ψ
(2)
1 = ψ−

1 , ψ
(3)
1 = ψ

[ 3
2 ]

1 , ψ
(1)
2 = ψ+

2 ,

ψ
(2)
2 = ψ−

2 , ψ
(3)
3 = ψ

[− 1
2 ]

2 , then the state vector � outcoming from this dynamical
preparing process must be � = U

(
ψ 1√

8

{|3/2〉 +
√

3|1/2〉 +
√

3|−1/2〉 + |−3/3〉} =
√

3
4

(
ψ

(1)
1 + ψ

(2)
1

)|1/2〉 + 1√
8
ψ

(3)
1 |3/2〉 + 1

4

(
ψ

(1)
2 + ψ

(2)
2

)|−3/2〉 +
√

3
8 ψ

(3)
2 |−1/2〉, which is just

the state vector needed for our experiment.

8
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However, it must be stressed the ideal character of our proposal. In fact, a real experiment,
addressed to simultaneously detect both WS property and an incompatible one, is yet to
be performed. In the literature, reports of actually realized experiments can be found in
which the two detections are performed as mutually exclusive, or complementary, alternatives
[20, 21]. We shall briefly compare our ideal experiment with these realistic experimental
schemes.

In the experiment reported in [20] the traveling particle is a photon, and the role of the
two slits is played by a Mach–Zehnder interferometer where the photon can take one of two
alternative paths. These paths are entangled with the polarization 
(θ0) of the photon in a
given direction θ0, so that the measurement of 
(θ0) reveals which path (equivalent to which
slit) has been taken by the photon. Hence in this experiment we have HII = C2, which is the
proper Hilbert space for describing the photon polarization. In this situation the polarization

(θ1) along the direction θ1 = θ0 + π/4 is entangled with a property different from, and
incompatible with, which-path property. Of course, this second detection is alternative to, and
excludes, the first one ([
(θ0),
(θ1)] �= 0). In our experimental scheme, the existence of the
two simultaneous detectors Y and T for the two incompatible properties E and G requires that
dim (HII ) � 4, because four non-trivial mutually orthogonal projections AII , BII , CII ,DII

must exist. Thus, this kind of realistic scheme cannot be adapted to realize an equivalent
version of our experiment.

The experiment realized by Dürr et al [21] is quite different. The bullet is a rubidium atom
(85Rb) which interacts, via a Bragg-scattering process [22], with a standing electromagnetic
wave playing the role of the two slits, and as a consequence it can take one of two alternative
paths. In general, two separated interference patterns are produced by the atoms in the far
field, and which-path information is not available. But with a suitable tuning of the standing
wave each path entangles with one of two internal electronic states of the hyperfine structure
of the atom, and which-path information can be obtained by measuring the hyperfine level
of the atom. Hence also in this case dim (HII ) = 2, while our scheme would require dim
(HII ) � 4. This suggests that this experimental method could eventually be adapted for an
equivalent version of our experiment exploiting richer hyperfine structures.

4. Solving problem P

In this section, we face the problem of mathematically finding solutions of problem (P). In
subsection A, by adopting a suitable matrix representation, we show that conditions C.1–C.4
impose some general constraints to the vector state � and to the entries of the matrix which
represents G.

In subsection B, we consider the case dim (HI ) � 4. No solution exists if dim (HI ) < 4.
If dim (HI ) = 4, then all solutions of (P) are affected by a direct correlation between the
detections of G and E.

In subsection C, the case dim (HI ) > 4 is considered. It is proved that solutions without
correlations exist if dim (HI ) � 6. In particular, we show a method to concretely single out a
family of these solutions.

4.1. General constraints

In a solution of problem (P) condition (C.2) [TII , YII ] = 0 implies that four mutually
orthogonal projection operators AII , BII , CII ,DII of HII exist [23] such that

TII = AII + BII , YII = AII + CII and AII + BII + CII + DII = 1II . (6)

9
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Hilbert space HI has an an orthonormal basis {f1, f2, ...} ∪ {g1, g2, ...} formed with
eigenvectors of EI such that EIfi = fi , for all i and EIgk = EIgk = 0 for all k. Thereby,
every state vector � ∈ HI ⊗HII can be uniquely decomposed as � = ∑

i fi ⊗xi +
∑

gk ⊗yk ,
where xi , yk ∈ HII . Then � shall be represented as a column vector:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

·
y1

y2

·
·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [a1, b1, c1, d1︸ ︷︷ ︸
xT

1

, a2, b2, c2, d2︸ ︷︷ ︸
xT

2

, ·, ·;α1, β1, γ1, δ1︸ ︷︷ ︸
yT

1

, α2, β2, γ2, δ2︸ ︷︷ ︸
yT

2

, ·, ·]T , (7)

where aj = AII xj , bj = BII xj , cj = CII xj , dj = DII xj and αk = AII yk, βk = BII yk, γk =
CII yk, δk = DII yk . According to such a representation, given any factorized linear operator
WI ⊗ XII of H = HI ⊗ HII we have

(WI ⊗ XII )� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j p̂1jXII xj +

∑
k û1kXII yk∑

j p̂2jXII xj +
∑

k û2kXII yk

·∑
j v̂1jXII xj +

∑
k q̂1kXII yk∑

j v̂2jXII xj +
∑

k q̂2kXII yk

·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where p̂ij = 〈fi |WI |fj 〉, ûik = 〈fi |WI |gk〉, v̂kj = 〈gk|WI |fj 〉 and q̂lk = 〈gl|WI |gk〉. Then, in
our representation WI ⊗ XII will be identified with the ‘four blocks’ matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̂11XII p̂12XII · û11XII û12XII ·
p̂21XII p̂22XII · û21XII û22XII ·

· · · · · ·
v̂11XII v̂12XII · q̂11XII q̂12XII ·
v̂21XII v̂22XII · q̂21XII q̂22XII ·

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so that (WI ⊗ XII )� in (8) turns out to be the classic matrix product of this matrix with the
column vector (7).

In particular, we have

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1II 0II · 0II 0II ·
0II 1II · 0II 0II ·
· · · · · ·

0II 0II · 0II 0II ·
0II 0II · 0II 0II ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TII 0II · 0II 0II ·
0II TII · 0II 0II ·
· · · · · ·

0II 0II · TII 0II ·
0II 0II · 0II TII ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (9i)

10
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G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p111II p121II · u111II u121II ·
p211II p221II · u211II u221II ·

· · · · · ·
v111II v121II · q111II q121II ·
v211II v221II · q211II q221II ·

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

YII 0II · 0II 0II ·
0II YII · 0II 0II ·
· · · · · ·

0II 0II · YII 0II ·
0II 0II · 0II YII ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9ii)

where pij = 〈fi |GI |fj 〉, uik = 〈fi |GI |gk〉, vkj = 〈gk|GI |fj 〉 and qlk = 〈gl|GI |gk〉.
By using (9.i) and (6), (7), from condition (C.3) T � = E� we obtain xj =

[aj , bj , 0, 0]T , yk = [0, 0, γk, δk]T , i.e.

� = [a1, b1, 0, 0︸ ︷︷ ︸
xT

1

, a2, b2, 0, 0︸ ︷︷ ︸
xT

2

, ·, ·; 0, 0, γ1, δ1︸ ︷︷ ︸
yT

1

, 0, 0, γ2, δ2︸ ︷︷ ︸
yT

2

, ·, ·]T . (gc.1)

Then by using (10.ii) and (gc.1), we see that condition (C.4) G� = Y� is equivalent to

(i)

{∑
i pjiai = aj∑
i pjibi = 0,

(ii)

{∑
l ujlγl = 0∑
l ujlδl = 0,

(gc.2)

(iii)

{∑
i vkiai = 0∑
i vkibi = 0,

(iv)

{∑
l qklγl = γk∑
l qklδl = 0.

Conditions (gc.1) and (gc.2) are general constraints to be satisfied in order that � and G
give rise to a solution of (P). The following conditions (gc.3) and (gc.4) are straightforward
consequences:

Eψ = T � = [a1, b1, 0, 0, a2, b2, 0, 0, · · · ; 0, 0, 0, 0, 0, 0, 0, 0, · · ·]T , (gc.3)

G� = Y� = [a1, 0, 0, 0, a2, 0, 0, 0, · · · ; 0, 0, γ1, 0, 0, 0, γ2, 0, · · ·]T . (gc.4)

4.2. dim (HI ) = 4: correlated solutions

We begin our search for solutions of (P) by establishing that no solution exists if dim (HI ) = 2.

Indeed, in this case G = [
p1II u1II

v1II q1II

]
, where p, u, v, q are complex numbers, with u = v̄ �= 0 to

satisfy [G,E] �= 0, and � = [a, b, 0, 0; 0, 0, γ, δ]. Then (gc.2.ii) and (gc.2.iii) respectively
imply γ = δ = 0 and a = b = 0, i.e. � = 0.

In considering higher dimensions, we shall restrict ourselves to the case that the slits are
symmetrical, which implies to exclude odd dimensions. In [24] we gave a solution of (P)

with dim (HII ) = 2 and dim (HI ) = 4. However, for this solution the outcomes of the two
detections of E and G coincide. Now we prove that this trivial character is shared by every
solution of (P), if dim (HI ) = 4, independent of the dimension of HII . In this case, the
representation (10) of the projection operators E,G, T and Y in a solution of (P) is made of
4 × 4 matrices, whereas � in (gc.1) is

� = [a1, b1, 0, 0, a2, b2, 0, 0; 0, 0, γ1, δ1, 0, 0, γ2, δ2]T .

As a consequence, conditions (gc.2) become (j = 1, 2)

(i)

{
pj1a1 + pj2a2 = aj

pj1b1 + pj2b2 = 0,
(ii)

{
uj1γ1 + uj2γ2 = 0
uj1δ1 + uj2δ2 = 0,

(iii)

{
vj1a1 + vj2a2 = 0

vj1b1 + vj2b2 = 0,
(iv)

{
qj1γ1 + qj2γ2 = γj

qj1δ2 + qj2δ2 = 0.

(10)

11
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In order that [G,E] �= 0, at least one of the entries uij must be different from 0. This
implies that the vectors y1 and y2 must be linearly dependent. Let us suppose that γ2 = λγ1

and δ2 = λδ1. By using these relations in (11.iv), we get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q11γ1 + q12γ2 = γ1 = (q11 + λq12)γ1

q21γ1 + q22γ2 = γ2 = (q21 + λq22)γ1

q11δ1 + q12δ2 = 0 = (q11 + λq12)δ1

q21δ1 + q22δ2 = 0 = (q21 + λq22)δ1,

If δ1 �= 0 then (q11 +λq12) = (q21 +λq22) = 0, which implies γ1 = γ2 = 0. On the other hand,
if δ1 = 0 then δ2 = λδ1 = 0, while γ1, γ2 can be non-vanishing with γ2 = λγ1. Similarly, we
can show that if b1 �= 0 then a1 = a2 = 0; if b1 = 0 then b2 = 0 and a2 = µa1. Hence, the
following statements are implied by (11):

(a) if b1 = 0 and δ1 = 0, then
� = [a1, 0, 0, 0, µa1, 0, 0, 0; 0, 0, γ1, 0, 0, 0, λγ1, 0]T ;

(b) if b1 = 0 and δ1 �= 0, then
� = [a1, 0, 0, 0, µa1, 0, 0, 0; 0, 0, 0, δ1, 0, 0, 0, λδ1]T ;

(c) if b1 �= 0 and δ1 = 0, then
� = [0, b1, 0, 0, 0, µb1, 0, 0; 0, 0, γ1, 0, 0, 0, λγ1, 0]T ;

(d) if b1 �= 0 and δ1 �= 0, then
� = [0, b1, 0, 0, 0, µb1, 0, 0; 0, 0, 0, δ1, 0, 0, 0, λδ1]T .

Cases (a) and (d) violate (C.5) because they respectively yield G� = � and G� = 0.
Therefore, a state vector in a solution of (P) must have one of the forms in (b), (c).

If case (b) (respectively case (c)) for � is realized then, taking into account (gc.3) and
(gc.4), we get T � = Y� (respectively (1II − T )� = Y�). This is equivalent to stating that
the conditional probability P(T |Y ) (respectively P(T |Y ′)) is equal to 1. As a consequence,
we can conclude that property G is detected by Y on a particle (i.e. the outcome for Y is 1) if
and only if T detects the passage of that particle through slit 1 (respectively slit 2). Thus, we
have perfect correlation.

4.3. Non-correlated solutions

In this subsection we answer the question whether, by allowing the dimension of HI to be at
least 6, solutions of (P) exist, without correlations between the detections of G and E, always
present in the (even) cases dim (HI ) < 6. We assume that rank(EI ) = rank(1I − EI ) = 3, so
that � = [x1, x2, x3; y1, y2, y3]T and in (gc.2) indices i, j, k, l take values in {1, 2, 3}. Now
we show that in order to have non-correlated solutions everyone of the triples {δ1, δ2, δ3} and
{b1, b2, b3} must be generated by just one vector, δ and b respectively.

Since at least one of the entries uij must be non-zero to satisfy [G,E] �= 0, general
constraint (gc.2.ii) implies that one of the three vectors y1, y2, y3—say y1—is a linear
combination of the remaining two:{

δ1 = λ12δ2 + λ13δ3

γ1 = λ12γ2 + λ13γ3.
(11)

Using these equations in (gc.2.iv), we get{
(qk2 + λ12qk1)δ2 + (qk3 + λ13qk1)δ3 = 0

γk = (qk2 + λ12qk1)γ2 + (qk3 + λ13qk1)γ3,
k = 1, 2, 3. (12)

12
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If the vectors δ2, δ3 are linearly independent, then the first equation in (12) implies
(qk2 + λ12qk1) = (qk3 + λ13qk1) = 0, so that the second equation in (12) yields γk = 0
for all k. Hence,

δ2, δ3 linearly independent ⇒ yk = [0, 0, 0, δk]T ,∀ k. (a.i)

In a similar way, we can prove that

b2, b3 linearly independent ⇒ xk = [0, bk, 0, 0]T ,∀ k. (a.ii)

Now we draw the consequences of (a.i)–(a.ii) relative to our problem (P). Given a state vector
� satisfying general constraint (gc.1), a possibility is that

(a) δ2, δ3 are linearly independent and b2, b3 are also linearly independent.
In this case xk = [0, bk, 0, 0]T and yk = [0, 0, 0, δk]T . If a solution of (P) exists, then
G� = Y� = 0 would follow from (gc.4), and condition (C.5) would be violated. If we
consider the other cases, then we obtain the following implications.

(b) δ2, δ3 linearly independent and b2, b3 linearly dependent imply
xk = [ak, bk, 0, 0]T and yk = [0, 0, 0, δk]T .

(c) δ2, δ3 linearly dependent and b2, b3 linearly independent imply
xk = [0, bk, 0, 0]T and yk = [0, 0, γk, δk]T .

(d) δ2, δ3 linearly dependent and b1, b2 linearly dependent imply
xk = [ak, bk, 0, 0]T and yk = [0, 0, γk, δk]T .

Now we can see that only case (d) leads to non-correlated solutions. In case (b), if a solution
of (P) exists such that δ2, δ3 are linearly independent and b2, b3 are linearly dependent, then
(gc.3), (gc.4) imply that YT � = Y� holds, which is equivalent to saying that the conditional
probability p(T |Y ) = 〈�|T Y�〉/〈�|Y�〉 is equal to 1; this means that each time a particle
is measured to have T = 1, then it certainly has Y = 1. In case (c) T Y� = T � holds,
so that each time a particle is sorted by Y, then it is certainly sorted by T. Therefore, for all
eventual solutions corresponding to cases (b) and (c), property G must be correlated with the
WS property E.

Hence, to concretely find non-correlated solutions, we have to take state vectors � such
that the triples δ1, δ2, δ3 and b1, b2, b3 are generated by just one vector, δ and b respectively.
Now we look for particular solutions corresponding to state vectors � such that{

a1 = a2 = 0, a3 �= 0, b2 = µb1 �= 0, b3 = 0,

γ1 = γ2 = 0, γ3 �= 0, δ2 = λδ1 �= 0, δ3 = 0.
(13)

Then (gc.2.i) and (gc.2.iv) respectively imply p13 = p23 = 0, p33 = 1 and q13 = q23 =
0, q33 = 1. Similarly, (gc2.iii) implies v13 = v23 = v33 = 0 and hence, by the self-adjointness
of GI , u31 = u32 = u33 = 0. On the other hand, the first equation in (gc.2.ii) and (13) imply
u13 = u23 = 0 and hence v31 = v33 = 0. Therefore, taking into account (13), conditions
(gc.2) become

(i)

{
p11 + µp12 = 0
p21 + µp22 = 0,

(ii)

{
u11 + λu12 = 0
u21 + λu22 = 0,

(iii)

{
v11 + µv12 = 0

v21 + µv22 = 0,
(iv)

{
q11 + λq12 = 0

q21 + λq22 = 0.

(14)

13
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The self-adjointness of G, together with (14), yields

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1II −p/µ1II 0II u1II −u/λ1II 0II

−p/µ̄1II p/|µ|21II 0II −u/µ̄1II u/λµ̄1II 0II

0II 0II 1II 0II 0II 0II

ū1II −ū/µ1II 0II q1II −q/λ1II 0II

−ū/λ̄1II ū/λ̄µ1II 0II −q/λ̄1II q/|λ|21II 0II

0II 0II 0II 0II 0II 1II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where we have put p = p11, u = u11, v = v11, q = q11. By imposing idempotence, we find
that in correspondence with λ = µ = 1, we have the following solution for G:

G=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1II −p1II 0II eiθ
√

p
(

1
2 − p

)
1II −eiθ

√
p

(
1
2 − p

)
1II 0II

−p1II p1II 0II −eiθ
√

p
(

1
2 − p

)
1II eiθ

√
p

(
1
2 − p

)
1II 0II

0II 0II 1II 0II 0II 0II

e−iθ
√

p
(

1
2 − p

)
1II −e−iθ

√
p

(
1
2 − p

)
1II 0II

(
1
2 − p

)
1II − (

1
2 − p

)
1II 0II

−e−iθ
√

p
(

1
2 − p

)
1II e−iθ

√
p

(
1
2 − p

)
1II 0II − (

1
2 − p

)
1II

(
1
2 − p

)
1II 0II

0II 0II 0II 0II 0II 1II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

such that rank(GI ) = 3, for every p such that 0 < p < 1/2 and any θ ∈ R.
For instance, for θ = 0 and p = 1/4, taking into account (13), we get the following

solution of (P):

� = [0, b1, 0, 0, 0, b1, 0, 0, a3, 0, 0, 0; 0, 0, 0, δ1, 0, 0, 0, δ1, 0, 0, γ3, 0]T , (17i)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 1II − 1

4 1II 0II
1
4 1II − 1

4 1II 0II

− 1
4 1II

1
4 1II 0II − 1

4 1II
1
4 1II 0II

0II 0II 1II 0II 0II 0II

1
4 1II − 1

4 1II 0II
1
4 1II − 1

4 1II 0II

− 1
4 1II

1
4 1II 0II − 1

4 1II 1II
1
4 1II 0II

0II 0II 0II 0II 0II 1II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17ii)

The ideal experiment of section 3.1 corresponds to the particular solution of this kind where
b1 = (

√
3/4)|1/2〉, a3 = (1/

√
8)|3/2〉, δ1 = (1/4)|−3/2〉, γ3 = √

3/8|−1/2〉.

5. Conclusive remarks

As a particular quantum measurement, our detection scheme inherits the so-called
measurement problem [25] from quantum mechanics. To see this, we make use of
a simplified argument, where HII is identified with the detector space. In a solution
of problem (P) with dim (HII ) = 4, the simultaneous detection of E and G is made
possible by the entanglement, encoded in the state vector (17.i) which we may rewrite as
� = φ1|1〉 + φ2|2〉 + φ3|3〉 + φ4|4〉, between the vectors φk of HI and the alternative pointer
states |1〉 ∝ a3, |2〉 ∝ b1, |3〉 ∝ γ3, |4〉 ∝ δ1 of the detector space HII , but we could arbitrarily
choose another pointer basis {|ξ 〉, |η〉, |τ 〉, |ζ 〉} ∈ HII , so that the same state vector � can be

14
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written as � = ϕ1|ξ 〉 + ϕ2|η〉 + ϕ3|τ 〉 + ϕ4|ζ 〉. Hence, the same � encodes entanglement with
another pointer, so that an alternative pair of non-commuting properties, say Ê and Ĝ, could
be detectable together with the measurement of the final impact point; therefore, the natural
conclusion that a definite outcome has been objectively realized for the detection of E and G,
i.e. the system decoheres [14], cannot be drawn, not even in the case that the detector was
prepared in advance just to detect E and G. According to quantum theory, such a conclusion
could be correctly stated only if the density operator associated with the quantum state is of
the reduced form

ρr = p1|1〉〈1| + p2|2〉〈2| + p3|3〉〈3| + p4|4〉〈4|, (18)

whereas the actual density operator ρ� corresponding to � is the ‘Schroedinger cat’ state
ρ� = |�〉〈�| = ρr +

∑
j �=k λj,k|j 〉〈k|. This is the form of the measurement problem of

quantum mechanics in our specific framework. Now we briefly outline how the theory
of ‘environment-induced decoherence’, one of the approaches developed to solve this
fundamental problem [14, 26], can also apply in the present case. Following this approach,
the whole system composed of the localizable particle plus the detector cannot be treated
as a closed system, because a certain amount of interaction with the rest of the universe
(the environment E described in a Hilbert space HE) always exists. Then, a right Hilbert
space to describe the detection process is HI ⊗ HII ⊗ HE . The presence of the apparatuses
prepared for detecting E and G forces the dynamics to also involve E , in such a way that
the right state vector is �̂ = φ1|1〉|ε1〉 + φ2|2〉|ε2〉 + φ3|3〉|ε3〉 + φ4|4〉|ε4〉, (|εk〉 ∈ HE) which
corresponds to the density operator ρ̂ = |�̂〉〈�̂|. The state of our open sub-system of the
entire universe, described in HI ⊗ HII , can be univocally obtained by tracing on any basis of
HE : ρI+II = ∑

εk
〈εk|ρ̂|εk〉 [23]. In so doing it turns out that ρI+II = ∑

k pk|k〉〈k| = ρr , which
is the right form (18) for avoiding the measurement problem.

The results of the present work provide interesting insights also with regard to the
consistent histories theory. Different from environmental decoherence, where the decoherence
is a dynamical consequence of the interaction with the environment E , the consistent histories
approach (CHA) is an extension of standard quantum theory aimed to describe how a quantum
system can decohere as an isolated system [15–17]. To this aim the CHA introduces the
concept of consistent family of histories, i.e. a suitable family of alternative sequences
h = (E1, E2, . . . , En), said histories, of quantum properties (projections Ek in h) the system
can objectively possess at the fixed respective times t1, t2, ..., tn during its unitary evolution as
an isolated system, ruled over by the Schroedinger equation; this entails that we can consider
histories of a consistent family exactly like events of a classical sample space. Thereby
[16, 27], the condition Re (T r(Ch1ρC∗

h2
)) = 0 for all mutually exclusive histories h1, h2 can

be implied, where Ch = En · En−1 · · · E1. This last mathematical condition, known as weak
decoherence, is the criterion adopted by Griffiths to select (consistent) families of decohering
histories. Other authors argue that stronger conditions are necessary [17].

In the present theory of double detection, modeled by means of two-slits experiment, we
argue of attributing properties E and/or G at time t1 and properties F(�) at time t2: in fact,
we are treating with two-times histories. Namely, two families of histories naturally arise:
the family CE of histories of the kind (E, F (�)) and the family CG of histories of the kind
(G, F (�)). It is not difficult to single out relationships between the detectability of E or G
as treated in section 4, and the consistency of the corresponding family, by making use of a
result proved in [28]. In that paper it is proved (Proposition 2) that the existence of a detector
T of E (respectively Y of G) implies that family CE (respectively CG) is weakly decoherent.
Therefore, we can easily derive the following implication.
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(R) If � is a vector state in a solution of problem (P), then both families CE and CG are
weakly decoherent.

It would seem quite natural to interpret the detection of E (the occurrence of outcome 1
for T) and the measured occurrence of F(�) as the occurrence of history h1 = (E, F (�)),
in the sense of the CHA. Now we show how this interpretation is inconsistent with the CHA
notion of consistent family. Since [E,G] �= 0, the families CE and CG are incompatible
families: it can be shown that no consistent family C exists which contains both CE and CG

[15, 16]; therefore, no individual specimen of the physical system can simultaneously follow
history h1 = (E, F (�)) ∈ CE and h2 = (G, F (�)) ∈ CG. But in our solution, for instance
that of section 3.1, the detections of E and G do occur simultaneously for the same specimen;
then we should conclude that both histories h1 and h2 have occurred, whenever outcome 1
occur for both T and Y.

Thus, the existence of non-trivial solutions of problem (P), proved in the present work,
gives rise to an interesting interpretative issue in connection with the CHA, perhaps related to
the debated issue (see [29] and references therein) of the choice of a single consistent family.

References

[1] Institut International de Physique Solvay, Rapport et discussions du 5e Conseil, Paris 1928
[2] Bohr N 1983 Quantum Theory of Measurement ed J A Wheeler and W H Zurek (Princeton, NJ: Princeton

University Press) p 9
[3] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)
[4] Lahti P J 1983 Int. J. Theor. Phys. 22 911
[5] Von Neumann J 1955 Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University

Press)
[6] Bohr N 1949 Albert Einstein: Philosopher-Scientist ed P A Schilpp (Evanston: Library of Living Philosophers

p 200)
[7] Feynman R, Leighton R and Sands M 1965 The Feynman Lectures on Physics, III (Reading, MA: Addison-

Wesley)
[8] Scully M O, Englert B-G and Walther H 1991 Nature 351 111
[9] Scully M O and Walther H 1989 Phys. Rev. A 39 5229

[10] Englert B-G, Schwinger J and Scully M O 1990 New Frontiers in Quantum Electrodynamics and Quantum
Optics ed A O Barut (New York: Plenum) p 507

[11] Wooters W K and Zurek W H 1987 Phys. Rev. D 19 473
[12] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[13] Englert B-G and Bergou J A 2000 Opt. Commun. 179 337
[14] Zurek W H 1991 Phys. Today 44 36
[15] Griffiths R B 1984 J. Stat. Phys. 36 219
[16] Omnès R 1999 Understanding Quantum Mechanics (Princeton, NJ: Princeton University Press)
[17] Gell-Mann M and Hartle J B 1993 Phys. Rev. D 47 3345
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